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Absfracf- An audio fingerprint is a content-based compact 
signature that summarizes an audio recording. Audio Finger- 
printing technologies have recently attracted attention since they 
allow the monitoring of audio independently of its format and 
without the need of meta-data or watermark embedding. The 
different approaches to fingerprinting are usually described 
with different rationales and terminology depending on the 
background Pattern matching, Multimedia (Music) Information 
Retrieval or Cryptography (Robust Hashing). In this paper, we 
review different techniques mapping functional parts to blocks 
of a unified framework. 

I. INTRODUCTION 
Audio fingerprinting is best known for its ability to link 

unlabeled audio to corresponding metadata (e.g. artist and song 
name), regardless of the audio format. Although there are more 
applications to audio fingerprinting, such us: Content-based 
integrity verification or watermarking support, this review 
focuses primarily on identification. Audio fingerprinting or 
Content-based audio identification (CBID) systems extract a 
perceptual digest of a piece of audio content, i.e. the fingerprint 
and store it in a database. When presented with unlabeled 
audio, its fingerprint is calculated and matched against those 
stored in the database. Using fingerprints and matching algo- 
rithms, distorted versions of a recording can be identified as 
the same audio content. 

A source of difficulty when automatically identifying audio 
content derives from its high dimensionality and the significant 
variance of the audio data for perceptually similar content. 
The simplest approach that one may think of - the direct 
comparison of the digitalized waveform - is neither efficient 
not effective. An efficient implementation of this approach 
could use a hash method, such as MD5 (Message Digest 5) 
or CRC (Cyclic Redundancy Checking), to obtain a compact 
representation of the binary file. In this setup, one compares 
the hash values instead of the whole files. However, hash 
values are fragile, a single bit flip is sufficient for the hash 
to completely change. Of course this setup is not robust to 
compression or minimal distorions of any kind and, in fact, it 
cannot be considered as content-based identification since it 
does not consider the content, understood as information, just 
the bits. 

An ideal fingerprinting system should fulfill several re- 
quirements. It should be able to accurately identify an item, 
regardless of the level of compression and distortion or 
interference in the transmission channel. Depending on the 
application, it should be able to identify whole titles from 

excerpts a few seconds long (property known as granularity 
or robustness to cropping), which requires methods for dealing 
with shifting, that is lack of synchronization between the 
extracted fingerprint and those stored in the database. It should 
also be able to deal with other sources of degradation such 
as pitching (playing audio faster or slower), equalization, 
background noise, D/A-A/D conversion, speech and audio 
coders (such as GSM or MP3), etc. The fingerprinting system 
should also be computationally efficient. This is related to the 
size of the fingerprints, the complexity of the search algorithm 
and the complexity of the fingerprint extraction. 

The design principles behind audio fingerprinting are recur- 
rent in several research areas. Compact signatures that repre- 
sent complex multimedia objects are employed in Information 
Retrieval for fast indexing and retrieval. In order lo index 
complex multimedia objects it is necessary to reduce their 
dimensionality (to avoid the “curse of dimensionality”) and 
perform the indexing and searching in the reduced space [I]- 
131. In analogy lo the cryptographic hash value, content-based 
digital signatures can be seen as evolved versions of hash val- 
ues that are robust to content-preserving transformations [4], 
[5]. Also from a pattern matching point of view, the idea 
of extracting the essence of a class of objects retaining the 
main its characteristics is at the heart of any classification 
system [6]-[10]. 

11. GENERAL FRAMEWORK 
In spite of the different rationales behind the identification 

task, methods share certain aspects. As depicted in Fig.1, there 
are two fundamental processes: the fingerprint extraction and 
the matching algorithm. The fingerprint extraction derives a 
set of relevant perceptual characteristics of a recording in a 
concise and robust form. The fingerprint requirements include: 

Discrimination power over huge numbers of other finger- 

Invariance to distortions, . Compactness, 
Computational simplicity. 

prints, 

The solutions proposed to fulfill the above requirements imply 
a trade-off between dimensionality reduction and information 
loss. The fingerprint extraction consists of a front-end and a 
fingerprint modeling block (see Fig.2). The front-end com- 
putes a set of measurements from the signal (see Section 
111). The fingerprint model block defines the final fingerprint 
representation, e.g: a vector, a trace of vectors, a codehook, 
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Fig. I .  Conlenr-based Audio Identification Framework. 

a sequence of indexes to HMM sound classes, a sequence 
of error correcting words or musically meaningful high-level 
attributes (see Section IV). 

Given a fingerprint derived from a recording, the matching 
algorithm searches a database of fingerprints to find the best 
match. A way of comparing fingeprints, that is a distance, 
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is therefore needed (see Section V-A). Since the number of 
comparison is high and the distance can be expensive to 
compute, we require methods that speed up the search. It is 
common to see methods that use a simpler distance to quickly 
discard candidates and the more correct but expensive distance 
for the reduced set of candidates. There are also methods that 
pre-compute some distances off-line and build a data structure 
that allows reducing the number of computations to do on-line 
(see Section V-B). According to [I  1, good searching methods 
should be : 

(systems that capture spectral dy- 

In some applications, where the audio to identify is coded, 
for instance in mp3, it is possible to by-pass some blocks and 
extract the features from the audio coded representation. 

A. Preprocessina 

namics). 

Fast: Sequential scanning and distance calculation can be 
too slow for huge databases. 
Correct: Should return the qualifying objects, without 
missing any - low False Rejection Rate (FRR). 
Memory efficient: They should require small space over- 
head. 
Easily updatable: They should allow to easily insert, 
delete and update objects. 

The last block of the system - the hypothesis testing (see 
Fig.1) - computes a reliability measure indicating how sure 
the system is about an identification (see Section VI). 

111. FRONT-END 

The front-end converts an audio signal into a sequence 
of relevant features to feed the fingerprint model block (see 
Fig.2). Several driving forces co-exist in the design of the 
front-end: 

Dimensionality reduction 
Perceptually meaningful parameters (similar to those used 

Invariance or robustness (to channel distortions, back- 
by the human auditory system) 

ground noise, etc.) 

In a first step, the audio is digitalized (if necessary) and 
converted to a general format: Often to raw format (16 bits 
PCM), to mono averaging left and right channels, to a certain 
sampling rate (ranging from 5 to 44.1 KHz). Sometimes the 
audio is preprocessed to simulate the channel, e.g: band- 
pass filtered in a telephone identification task. Other types 
of processing are a GSM coderldecoder in a mobile phone 
identification system, pre-emphasis, amplitude normalization 
(bounding the dynamic range to (-1,l)). 

B. Framing&Overlap 

A key assumption in the measurement of characteristics is 
that the signal can be regarded as stationary over an interval of 
a few milliseconds. Therefore, the signal is divided into frames 
of a size comparable to the variation velocity of the underlying 
acoustic events. The number of frames computed per second 
is called frame rate. A tapered window function is applied to 
each block to minimize the discontinuities at the beginning and 
end. Overlap must be applied to assure robustness to shifting 
(i.e. when the input data is not perfectly aligned). There is 
again a trade-off when choosing the above values between the 
rate of change in the spectrum and system complexity. 
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C. Linear Transforms: Spectral Estimates 
The idea behind linear transforms is the transformation 

of the set of measurements to a new set of features. If the 
transform is suitably chosen, the redundancy is significantly 
reduced. There are optimal transforms in the sense of infor- 
mation packing and decorrelation properties, like Karhunen- 
Lokve (KL) or Singular Value Decomposition (SVD) [9]. 
These transforms, however, are problem dependent and com- 
putationally complex. For that reason, lower complexity trans- 
forms using fixed basis vectors are common. Most CBID meth- 
ods therefore use standard transforms from time lo frequency 
domain to facilitate efficient compression, noise removal and 
subsequent processing. Lourens [ I  1 1 ,  (for computational sim- 
plicity), and Kurth et al. [IZ], (to model highly distorted 
sequences, where the time-frequency analysis exhibits dis- 
tortions), use power measures. The power can still be seen 
as a simplified time-frequency distribution, with only one 
frequency bin. 

The most common transformation is the Fast Fourier Trans- 
modulation frequency estimation of the energy of 19 bark- 
spaced band-filters. 

Approaches from music information retrieval include fea- 
tures that have proved valid for comparing sounds: harmonic- 
It% bandwidth’ loudness [I5]’ ZCR, 

are heuristic, and as such, may not he optimal [ w .  For 
that reason, they use a modified Karhunen-Love transform, 
the Oriented Principal Component Analysis (OPCA), to find 
the optimal features in an “unsupervised” way. If PCA (KL) 
finds a set of orthogonal directions which maximize the signal 

directions which take some predefined distortions into account. 

form (FFT). Some other transforms have been proposed 
the Discrete Cosine Transform (DCT), the H m  Transform 
or the Walsh-Hadmard Transform [21, Richly et did a 
comparison of the Dm and the Walsh-Hadamard Transform 
that revealed that the D I T  is generally less sensitive to 

used by Mih@ ~ 1 4 1  
exhibits approximate shift invariance properties [SI. 

shifting []3], The Modulated Complex Transform (MCLT) Burges er al. point Out that the features commonly 

a[, [SI and a]so by B~~~~~ 

D. Feafure Extraction 
once on a time-frequency representation, trans- 

ln this step, we find a great diversity of algorithms, 
The objective is again to reduce the dimensionality and, at the 
same time, to increase the invariance to distortions. It is very 
common to include knowledge of the transduction stages of 
the human auditory system to extract more perceptually mean- 
ingful parameters. Therefore, many systems extract several 
features performing a critical-band analysis of the spectrum 
(see Fig.3). In [6], [MI, Mel-Frequency Cepstrum Coefficients 
(MFCC) are used. In [7], the choice is the Spectral Flatness 
Measure (SFM), which is an estimation of the tone-like or 
noise-like quality for a hand in the spectrum. Papaodysseus et 
al. [16] presented the “band representative vectors”, which are 
an ordered list of indexes of bands with prominent tones (i.e. 
with peaks with significant amplitude). Energy of each band 
is used by Kimura ef al. [3]. Haitsma et al. use the energies 
of 33 bark-scaled bands to obtain their “hash smng”, which is 
the sign of the energy band differences (both in the time and 
the frequency axis) [4]. 

Sukittanon and Atlas claim that spectral estimates and 
related features only are inadequate when audio channel distor- 
tion occurs [81. They propose modulation frequency analysis 
to characterize the time-varying behavior of audio signals. In 
this case, features correspond to the geometric mean of the 

formations are applied in order to generate the final acoustic variance, OPCA obtains a set of Possible ”on-ofihogonal 

E’ Posr-pr~ocessing 

Most of the features described so far are absolute measure- 
ments. In order to better characterize temporal variations in the 
signal, higher order time derivatives are added to the signal 
model. In [6] and [17], the feature vector is the concatenation 
of MFCCs, their derivative (delta) and the acceleration (delta- 
delta), as well as the delta~and delta-delta of the energy. 
Some systems only use the derivative of the features, not the 
absolute features [7], [12]. Using the derivative of the signal 
measurements tends to amplify noise [IO] but, at the same 
time, filters the distortions produced in linear time invariant, 
or slowly varying channels (like an equalization). Cepswm 
Mean Normalization (CMN) is used to reduce linear slowly 
varying channel distortions in [17]. If Euclidean distance is 
used (see Section V-A), mean subtraction and component 
wise variance normalization are advisable. Some systems 
compact the feature vector representation using transforms 
(e.g: PCA 161, [17]). 

It is quite common to apply a very low resolution quan- 
tization to the features: ternary [I31 or binary [4], [12]. The 
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purpose of quantization is to gain robustness against distor- 
tions [4], [ I  21, normalize [13], ease hardware implementations, 
reduce the memory requirements and for convenience in 
subsequent parts of the system. Binary sequences are required 
to extract error correcting words utilized in [SI, [121. In [SI, 
the discretization is designed to increase randomness in order 
to minimize fingerprint collision probability. 

IV. FINGERPRINT MODELS 

The fingerprint modeling block usually receives a sequence 
of feature vectors calculated on a frame by frame basis. 
Exploiting redundancies in the frame time vicinity, inside a 
recording and across the whole database, is useful to further 
reduce the fingerprint size. The type of model chosen con- 
ditions the distance metric and also the design of indexing 
algorithms for fast retrieval (see Section V). 

A very concise form of fingerprint is achieved by sum- 
marizing the multidimensional vector sequences of a whole 
song (or a fragment of it) in a single vector. Etantrum [IS] 
calculates the vector out of the means and variances of the 16 
bank-filtered energies corresponding to 30 sec of audio ending 
up with a signature of SI2 bits. The signature along with 
information on the original audio format is sent to a server for 
identification. Musicbrainz’ TRM signature (191 includes in a 
vector: the average zero crossing rate, the estimated beats per 
minute (BPM), an average spectrum and some more features 
to represent a piece of audio (corresponding to 26 sec). The 
two examples above are computationally efficient and produce 
a very compact fingerprint. They have been designed for 
applications like linking mp3 files to metadata (title, artist, 
etc.) and are more tuned for Low complexity (both on the client 
and the server side) than for robustness (cropping or liroadcast 
streaming audio). 

Fingerprints can also be sequences (traces, trajectories) of 
features. This fingerprint representation is found in 1151, and 
also in [4]~as binary vector sequences. The fingerprint in [16], 
which consists on a sequence of “band representative vectors”, 
is binary encoded for memory efficiency. 

Some systems, include high-level musically meaningful 
attributes, like rhythm (BPM) or prominent pitch (see 1191 
and [IS]). 

Following the reasoning on the possible sub-optimality of 
heuristic features, Burges et al. [14] employ several layers of 
OPCA to decrease the local statistical redundancy of feature 
vectors with respect to time. Besides reducing dimensional- 
ity, extra robustness requisites to shifting and pitching are 
accounted in the transformation. 

“Global redundancies” within a song are exploited in [71. If 
we assume that the features of a given audio item are similar 
among them, a compact representation can be generated by 
clustering the feature vectors. The sequence of vectors is thus 
approximated by a much lower number of representative code 
vectors, a codebook. The temporal evolution of audio is lost 
with this approximation. Also in [7], shon-time statistics are 

collected over regions of time. This results in both higher 
recognition, since some temporal dependencies are taken into 
account, and a faster matching, since the length of each 
sequence is also reduced. 

[6] and [I71 use a fingerprint model that further exploits 
global redundancy. The rationale is very much inspired on 
speech research. In speech; an alphabet of sound classes, i.e. 
phones can be used to segment a collection of raw speech 
data into text achieving a great redundancy reduction without 
“much” information loss. Similarly, we can view a corpus of 
music, as sentences constructed concatenating sound classes 
of a finite alphabet. “Perceptually equivalent” drum sounds, 
for instance, occur in a great number of pop songs. This 
approximation yields a fingerprint which consists in sequences 
of indexes to a set of sound classes representative of a 
collection of audio items. The sound classes are estimated 
via unsupervised clustering and modeled with Hidden Markov 
Models (HMMs). Statistical modeling of the signal’s time 
course allows local redundancy reduction. The fingerprint 
representation as sequences of indexes to the sound classes 
retains the information on the evolution of audio through time. 

In 151, discrete sequences are mapped to a dictionary of 
error correcting words. In 1121, the error correcting codes are 
at the basis of their indexing method. 

V. DlSTANCES AND SEARCHlNG METHODS 

A. Disrances 
Distance metrics are very much related to the type of model 

chosen. When comparing vector sequences, a correlation is 
common. The Euclidean distance, or slightly modified versions 
that deal sequences of different lengths, are used for instance 
in [IS]. In 181, the classification is Nearest Neighbor using 
a cross entropy estimation. In the systems where the vector 
feature sequences are quantized, a Manhattan distance (or 
Hamming when the quantization is binary) is common [4], 
[13]. Mihqak et al. [SI suggest that another error metric, which 
they call “Exponential Pseudo Norm” (EPN), could be more 
appropriate to better distinguish between close and distant 
values with an emphasis stronger than linear. 

So far we have presented an identification framework that 
follows a template matching paradigm [9]: both the reference 
patterns - the fingerprints stored in the database - and the test 
pattern - the fingerprint extracted from the unknown audio 
- are in the same format and are compared according to 
some distance metric, e.g: hamming distance, a correlation 
and son on. In some systems, only the reference items are 
actually “fingerprints” - compactly modeled as a codebook or 
a sequence of indexes to HMMs [7], [17]. In these cases, the 
distances are computed directly between the feature sequence 
extracted from the unknown audio and the reference audio 
fingerprints stored in the repository. In [7], the feature vector 
sequence is matched to the different codehooks using a dis- 
tance metric. For each codebook, the errors are accumulated. 
The unknown item is assigned to the class which yields the 
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lowest accumulated error. In 1171, the feature sequence is run 
against the fingerprints (a concatenation of indexes pointing 
at HMM sound classes) using the Viterbi algorithm. The most 
likely passage in the database is selected. 

B. Searching methods 
Besides the definition of a distance metric for fingerprint 

comparison, a fundamental issue for the usability of a system 
is how to efficiently do the comparisons of the unknown audio 
against the possibly million fingerprints. The method depends 
on the fingerprint represention. Vector spaces allow the use of 
efficient existing spatial access methods [l]. The general goal 
is to build a data structure, an index, to reduce the number of 
distance evaluations when a query is presented. As stated by 
Chive2 et al., most indexing algorithms for proximity search- 
ing build sets of equivalence classes, discard some classes 
and search exhaustively the rest [201 (see for example 131). 
The idea of using a simpler distance to quickly eliminate 
many hypothesis and the use of indexing methods to overcome 
the brute-force exhaustive matching with a more expensive 
distance is found in the CBID literature, e.g: in [21]. Haitsma 
er al. proposed an index of possible pieces of a fingerprint 
that points to the positions in the songs. Provided that'a piece 
of a query's fingerprint is free of errors (exact match), a list 
of candidate songs and positions can be efficiently generated 
to exhaustively search through 141. In [6] ,  heuristics similar 
to those used in computational biology for the comparison 
of DNA are used to speed up a search in a system where 
the fingerprints are sequences of symbols. Kurth et al. [I21 
present an index that use code words extracted from binary 
sequences representing the audio. These approaches, although 
very fast, make assumptions on the errors permitted in the 
words used to build the index which could result in false 
dismissals. As demonstrated in 1221, in order to guarantee 
no false dismissals, the simple (coarse) distance used for 
discarding unpromising hypothesis must lower bound the more 
expensive (fine) distance. 

VI. HYPOTHESIS TESTING 
This last step aims to answer whether the query is present 

or not in the repository of items to identify. During the 
comparison of the extracted fingerprint to the database of 
fingerprints, scores (resulting from distances) are obtained. In 
order to decide that there is a correct identification, the score 
needs to be beyond a certain threshold. I t  is not easy to choose 
a threshold since it depends on: the used fingerprint model, 
the discriminative information of the query, the similarity of 
the fingerprints in the database, and the database size. The 

VII. SUMMARY 
We have presented a review of current trends of research in 

the recent area of audio fingerprinting. The different tasks in- 
volved in an audio fingerprinting system have been described. 
The purpose of each block has been commented along with 
some hints of the proposed solutions. 
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