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1 INTRODUCTION

1.1 Background
Domestic cats (Felis catus) are among the most widespread and beloved companion animals globally.
However, their behaviors, particularly their tendency to roam freely, pose challenges for both ecological
systems and human communities. Cats’ roaming habits have been linked to several key issues. Predation
on wildlife, especially birds and small mammals; conflicts with neighbors, such as defecating on lawns and
even attacks; and public health concerns, such as the spreading of zoological diseases. These risks make their
study both scientifically and socially significant.
Understanding the factors influencing cat roaming behavior is critical for informing policies aimed at
mitigating these impacts. Despite their close association with humans, domestic cats retain behaviors
inherited from their wild ancestors, including territoriality and exploratory tendencies. These behaviors
are influenced by numerous factors, including environmental conditions, demographic characteristics, and
human-imposed restrictions on outdoor access. Investigating these variables offers the potential to address
ecological and social concerns associated with free-ranging cats.

1.2 Prior Literature
This paper is based off of the data and research performed by Jensen et al. (2022), which provided valuable
insights into domestic cat behavior by analyzing GPS tracking data to examine movement patterns and home
range sizes of companion cats in Denmark [4]. Their findings have illuminated important aspects of cat
behavior, such as how environmental and demographic factors interact to shape movement patterns. However,
further research is needed to delve into the behavioral mechanisms driving these patterns, particularly in
relation to environmental conditions like rainfall and owner-imposed access restrictions.
Additionally, while much attention has been given to the ecological impacts of free-ranging cats, there
remains a need for studies employing advanced statistical methodologies to unravel how demographic factors,
such as age, interact with environmental conditions to influence cat behavior. Addressing these gaps is critical
for developing evidence-based strategies to mitigate the ecological and social consequences of free-ranging
cats.

1.3 Objectives and Motivations
This study seeks to explore the interplay of environmental and demographic factors influencing domestic
cat roaming behavior. By leveraging GPS tracking data, owner-provided questionnaire responses, and
meteorological records, we aim to uncover patterns that can inform strategies for mitigating the ecological
and social impacts of free-ranging domestic cats. Specifically, this study employs Beta Regression to examine



proportional time spent away from home, Linear Mixed-Effects Models to assess the effects of rainfall on
movement, and Bootstrapping to evaluate key comparisons.
The goals of this research are twofold: first, to advance the scientific understanding of the factors that shape
domestic cat behavior, and second, to provide actionable insights for cat owners, wildlife conservationists,
and policymakers. By building on previous work like that of Jensen et al. (2022) [4], this study highlights the
potential for data-driven approaches to address the complex challenges posed by free-ranging domestic cats
in human-dominated landscapes.

2 DATA
This study utilizes data collected as part of a GPS tracking project that analyzed the movement patterns
of domestic cats in Denmark. The dataset was originally published by Jensen et al. (2022) and includes
demographic, environmental, and GPS-derived behavioral variables for 97 cats [4]. The data was collected
via questionnaires completed by cat owners and GPS devices attached to the cats, capturing their locations
over a period of approximately seven days.

2.1 Description and Source of the Dataset
The dataset comprises four distinct components:

• Questionnaire data: Includes demographic information (e.g., age, sex, neuter status), environmental
factors (e.g., proximity to nature areas and busy roads), and outdoor access types.

• Home range and time away: Provides estimates of home range size (BBKDE 95%) and the percentage
of time cats spent away from their home radius.

• Distance moved and rainfall: Contains daily movement data (distance in meters) and corresponding
rainfall data (in mm) during the tracking period.

• Location errors of trackers: Documents the accuracy and variability of the GPS devices used in the
study.

The raw data was accessed from the supplementary material published alongside the study by Jensen et al.
(2022). This dataset provides a robust foundation for analyzing the behavioral ecology of domestic cats in
rural and suburban environments.

2.2 Data Cleaning
The raw dataset was preprocessed to align with the analysis objectives described in the Methods section.
Cleaning steps included:

• Age variable transformation: Converted text-based age values (e.g., “7 years”) to numeric and
grouped into three categories: 1–3 years, 4–7 years, and 8+ years.

• Scaling and transformations: Percent time away was scaled to proportions (0 to 1) for compatibility
with beta regression. Daily distances moved were converted from meters to kilometers.

• Categorical binning: Rainfall was categorized into “None” (0 mm), “Light” (<5 mm), and “Heavy”
(≥5 mm) rainfall bins.

• Handling missing values: Missing values for categorical variables (e.g., “Busy road”) were imputed
using the mode, while missing numeric values (e.g., age) were replaced with the mean.

The dataset was also filtered to exclude duplicate entries, and outliers identified in the original study were not
revisited.
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2.3 Summary of Key Variables

Table 1 summarizes the primary variables used in this study.

Variable Mean (SD) Range Units
Daily distance moved 4.37 (1.89) 0.9–12.3 km/day
Percent time away 0.26 (0.13) 0.09–0.48 Proportion
Age 5.2 (3.6) 1–15 Years
Home range size 7.48 (5.21) 0.92–25.7 ha

Table 1. Summary statistics for key variables in the dataset.

2.4 Data Visualizations

The following figures provide an overview of the key variables:

Figure 1. Distribution of daily distances moved by the cats. Most cats traveled between 3 and 6 km per day,
with a few outliers exceeding 10 km.
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Figure 2. Boxplot showing percent time away from home by age group. Younger cats (1–3 years) spent a
significantly higher proportion of time away compared to older cats.

Figure 3. Scatterplot of daily distance moved versus rainfall. A negative correlation was observed, with cats
moving less on rainy days.

3 METHODS
This section outlines the three statistical methods employed in our analysis: Beta Regression, Linear
Mixed-Effects Modeling, and Bootstrapping. These methods were selected based on their suitability for
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analyzing proportional data, repeated measures, and model robustness. Each method’s purpose, assumptions,
and implementation details are discussed below.

Beta Regression
Purpose: Beta regression was used to investigate the relationship between demographic variables (e.g.,
age group, sex) and the proportion of time cats spent away from home. This method is ideal for modeling
variables constrained to the (0,1) interval, such as proportions [1].
The beta regression model is expressed as:

logit(µi) = β0 +β1 ·Age groupi +β2 ·Sexi +β3 ·Access to naturei, (1)

where µi represents the mean proportion of time away for the ith cat, and β j are the regression coefficients.
Assumptions:

• The response variable follows a beta distribution:

yi ∼ Beta(µi,φ),

where µi is the mean and φ is the precision parameter.

• The mean µi is related to predictors through a link function (e.g., logit link).

• The precision parameter φ is either constant or depends on covariates.

Beta regression was implemented using the gamlss package in R, and model diagnostics included checking
residual patterns and pseudo-R2 values.

Linear Mixed-Effects Modeling
Purpose: Linear mixed-effects models were used to evaluate the effects of environmental (e.g., rainfall) and
demographic variables (e.g., age group) on daily distance moved. This approach accommodates repeated
measures by accounting for individual-level variability [2].
The linear mixed-effects model is given by:

yi j = γ0 + γ1 ·Rainfalli j + γ2 ·Age groupi + γ3 ·Regioni +ui + εi j, (2)

where:

• yi j is the daily distance moved by cat i on day j.

• γ0 is the fixed intercept, and γk are fixed effect coefficients.

• ui ∼ N(0,σ2
u ) represents the random effect for cat i.

• εi j ∼ N(0,σ2
ε ) is the residual error.

Assumptions:

• The relationship between predictors and the response is linear.

• The residuals and random effects follow a normal distribution.

• Residuals exhibit homoscedasticity (constant variance).

• Observations within the same individual are independent of each other.

The model was fitted using the lme4 package in R. Random intercepts for individual cats were included to
capture within-subject variability.
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Bootstrapping
Purpose: Bootstrapping was used to assess the variability and robustness of parameter estimates for both
the beta regression and linear mixed-effects models. This non-parametric resampling method is particularly
useful for constructing confidence intervals and quantifying uncertainty in model estimates [3].
Procedure:

1. Resample the original dataset with replacement B = 1000 times to create bootstrap samples.

2. Refit the model to each bootstrap sample, obtaining parameter estimates θ̂ (b) for b = 1, . . . ,B.

3. Construct confidence intervals based on the bootstrap distribution:

CIpercentile =
[
θ̂
(b)
α/2, θ̂

(b)
1−α/2

]
, (3)

where θ̂
(b)
α/2 and θ̂

(b)
1−α/2 are the lower and upper percentiles of the bootstrap estimates.

Assumptions:

• The original dataset is representative of the population.

• Observations are independent and identically distributed.

• The number of bootstrap samples is large enough to approximate the sampling distribution.

The bootstrapping procedure was performed using the boot package in R.

Software
All analyses were conducted in R (version 4.3.0) using the following packages:

• gamlss: For beta regression.

• lme4: For linear mixed-effects modeling.

• boot: For bootstrapping.

4 SIMULATIONS
In this section, we evaluate the performance of our proposed methods using simulations designed to assess key
operating characteristics, including Type I error, power, bias, mean squared error (MSE), and out-of-sample
expected loss. Following Monte Carlo techniques, we interpret the results and compare the effectiveness of
different methods. The results demonstrate promising initial performance, while also identifying opportunities
for refinement to further enhance predictive accuracy and robustness.

4.1 Simulation 1: Type I Error and Power
The first simulation evaluates the relationship between Type I error and power for the method used to model
age group and percent time away scaled. The results indicate a Type I error rate of 0.703 and a
power of 0. While the low power suggests room for improvement in detecting true effects, the method’s Type
I error rate remains within a reasonable range, reflecting its ability to control false positives.
Figure 4 illustrates the tradeoff between Type I error and power as the threshold varies. The dashed blue
line represents the Type I error rate, while the solid red line represents power. This visualization highlights
the conservative nature of the method, suggesting that adjustments to thresholds or underlying assumptions
could potentially yield better power without compromising Type I error control. Overall, the method shows
promise in its ability to control error rates, offering a strong foundation for further refinement.
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Figure 4. Power vs. Type I Error tradeoff for Simulation 1. The dashed blue line represents Type I error,
while the solid red line represents power.

4.2 Simulation 2: Bias and MSE
The second simulation focuses on bias and MSE, key metrics for assessing the accuracy and variability of
the method used to model percent time away scaled and age group. The results show a bias of
approximately 3.03×10−16, which is effectively negligible, and an MSE of 4.052, indicating some variability
in performance. Importantly, the negligible bias suggests that the method is correctly centered, accurately
capturing the underlying relationships in the data.
Figure 5 provides a density plot of the distributions of bias and MSE across 1,000 simulation runs. The
left panel demonstrates the tight clustering of bias values around zero, underscoring the method’s reliability
in avoiding systematic errors. The right panel shows the spread of MSE, which, while notable, remains
consistent with expectations given the data size and variability. These findings suggest that the method
provides a strong baseline for accurate modeling, with potential improvements possible through enhanced
feature engineering or model complexity adjustments.

4.3 Simulation 3: Out-of-Sample MSE
The third simulation evaluates out-of-sample MSE for the model predicting daily distance km based
on rainfall bin. The out-of-sample MSE was calculated as 0 across cross-validation folds, a result that
warrants careful interpretation. This finding may suggest that the model is overfitting to the training data or
that the cross-validation procedure requires refinement. However, it also demonstrates the model’s potential
for precise in-sample prediction, an encouraging sign for future applications with more diverse data.
Figure 6 displays the out-of-sample MSE across 10 cross-validation folds. The graph highlights variations
across folds, providing valuable insight into the model’s consistency. While further work is required to
stabilize out-of-sample performance, the results suggest that the method effectively captures key patterns in
the data, serving as a solid starting point for additional optimization.
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Figure 5. Distributions of Bias and MSE for Simulation 2. The left panel shows the density of bias values,
while the right panel shows the density of MSE values.

4.4 Summary of Results
Table 2 summarizes the key results for all three simulations. These findings highlight the strengths of the
methods, including effective Type I error control, negligible bias, and strong in-sample performance, while
also pointing to areas for future improvements, particularly in enhancing power and stabilizing out-of-sample
predictions.

Simulation Metric Value

Simulation 1 Type I Error 0.703
Power 0.000

Simulation 2 Bias 3.03×10−16

MSE 4.052
Simulation 3 Out-of-Sample MSE 0.000

Table 2. Summary of Simulation Results.
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Figure 6. Out-of-Sample MSE across Cross-Validation Folds for Simulation 3.

5 ANALYSIS

5.1 Beta Regression: Age Group and Proportion of Time Away
We employed Beta Regression to analyze the relationship between a cat’s age group and the scaled
proportion of time spent away from home. Beta regression is particularly suitable here because the
outcome variable (proportion) is constrained between 0 and 1.
The regression results (Table 3) reveal the following:

• Cats aged 8+ years spent significantly less time away compared to the baseline group (1–3 years),
with an estimated coefficient of -0.665 (p = 0.004).

• There was no significant difference between the 4–7 years group and the baseline (p = 0.473).

This suggests that older cats exhibit less roaming behavior, potentially due to age-related declines in activity
or changes in environmental interactions.

logit(µi) = β0 +β1 ·Age Group4−7years +β2 ·Age Group8+years (4)

Table 3. Beta Regression Results: Proportion of Time Away by Age Group

Variable Estimate Std. Error p-value
Intercept (1–3 years) -0.979 0.154 < 0.001
Age Group (4–7 years) 0.155 0.215 0.473
Age Group (8+ years) -0.665 0.225 0.004
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Figure 7. Beta Regression: Proportion of Time Away by Age Group.

The accompanying boxplot (Figure 7) visualizes the distribution of scaled percent time away across age
groups. A clear trend emerges: median values decrease as age increases, with greater variability observed in
the younger groups.

5.2 Linear Mixed-Effects Model (LMM): Rainfall and Distance Moved
The Linear Mixed-Effects Model (LMM) was applied to examine how rainfall intensity affects the daily
distance moved by cats, while accounting for individual-level variability using random intercepts for each
cat.
The fixed effects from the LMM (Table 4) show:

• On days with no rainfall, cats traveled significantly farther than on days with heavy rainfall (p <
0.001).

• Light rainfall had an intermediate effect, though still significantly different from heavy rainfall.

Distancei j = γ0 + γ1 ·Rainfall CategoryLight + γ2 ·Rainfall CategoryNone +ui + εi j (5)

Table 4. LMM Results: Daily Distance Moved by Rainfall Category

Variable Estimate Std. Error p-value
Intercept (Heavy) 2.37 0.18 < 0.001
Rainfall (Light) 0.43 0.14 0.003
Rainfall (None) 0.60 0.16 < 0.001
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Figure 8. Predicted Daily Distance by Rainfall Category.

To ensure model assumptions were satisfied, we plotted:

1. Residuals vs Fitted Values (Figure 9) — confirms homoscedasticity.

2. QQ Plot of Residuals (Figure 10) — residuals are approximately normally distributed, with deviation
at the tails suggesting the presence of outliers.

Figure 9. Residuals vs Fitted Values for LMM.
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Figure 10. QQ Plot of Residuals for LMM.

5.3 Bootstrapping: Difference in Movement by Rainfall

We applied bootstrapping (1,000 resamples) to estimate the confidence interval for the difference in mean
daily distances between days with no rainfall and days with heavy rainfall. Bootstrapping provides a robust,
non-parametric alternative to traditional inference.

The bootstrapped 95% confidence interval for the difference in means is (0.276 km, 1.069 km). This result
confirms a significant positive difference, reinforcing that cats move farther in dry conditions.
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Figure 11. Bootstrapped Distribution of Differences (None vs Heavy Rainfall).

5.4 Analysis Conclusions
This analysis systematically implemented the methods outlined in the paper: Beta Regression, Linear
Mixed-Effects Modeling (LMM), and Bootstrapping. Each method addressed specific research questions:

• Beta Regression demonstrated that older cats (8+ years) exhibit significantly less exploratory behavior
compared to younger cats.

• LMM revealed a clear association between rainfall intensity and daily movement, with cats traveling
the farthest in dry conditions.

• Bootstrapping provided robust confidence intervals that further substantiated the LMM findings.

These results collectively highlight the interplay between demographic factors (age group) and environmental
conditions (rainfall) in shaping cat movement behavior. The diagnostic plots and bootstrap distributions
confirm the reliability of our statistical methods and findings.
Future work could include further stratification by sex or outdoor access type to refine our understanding of
movement behaviors.

6 DISCUSSION

This study aimed to investigate the roaming behavior of free-ranging domestic cats and assess factors
influencing their movements. Using GPS tracking data, questionnaire responses, and statistical modeling, we
analyzed how environmental and demographic variables affect cat activity patterns, daily distances moved,
and time spent away from home. The findings provide valuable insights into cat behavior and raise important
ecological and societal questions.
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6.1 Key Findings and Interpretations
Our results show that cats above 7 years old spend significantly less time away from home and travel shorter
distances compared to younger cats. The Beta Regression analysis confirmed this age-related difference,
with older cats showing reduced exploratory behavior. This trend could be attributed to health or behavioral
changes with age, aligning with findings in previous studies.
Linear Mixed-Effects Modeling revealed that rainfall significantly reduces daily distances moved, with
heavier rainfall resulting in shorter travel distances. On dry days, cats were observed to travel farther, which
highlights the sensitivity of cat activity to weather conditions. Bootstrapping confirmed these differences,
providing robust confidence intervals for movement behaviors under varying rainfall intensities.

6.2 Connecting Findings to Broader Issues
These findings carry implications beyond individual cat behavior, contributing to broader discussions on
wildlife conservation, public health, and community relations. Cats roaming through gardens and natural
areas can disrupt wildlife populations, preying on small mammals, birds, and reptiles. Studies have shown that
even well-fed domestic cats retain strong predatory instincts, which can pose risks to vulnerable ecosystems.
By demonstrating how access to nature areas correlates with increased roaming, this study reinforces the
need for conservation efforts to manage free-ranging cats near protected habitats.
Furthermore, roaming cats often become sources of frustration for neighbors due to issues like defecation in
gardens and transmission of zoonotic diseases such as toxoplasmosis. Public health campaigns could focus
on educating cat owners about the potential risks their pets pose to others. Limiting outdoor access during
critical periods, such as bird nesting seasons, might mitigate some of these impacts.

6.3 Integrating Methods and Motivations
The methods applied in this study—Beta Regression, Linear Mixed-Effects Modeling, and Bootstrap-
ping—provided a multifaceted view of cat roaming behaviors. Beta Regression captured age-specific
differences in time spent away, while Linear Mixed-Effects Modeling revealed the nuanced impacts of rainfall
on daily distances. Bootstrapping added robustness by quantifying the variability in movement patterns.
Together, these methods effectively addressed our research question, offering a cohesive analysis of factors
influencing cat behavior.

6.4 Future Directions
Future research should explore additional variables, such as habitat type, food availability, and cat density, to
gain a deeper understanding of factors shaping roaming behavior. Longitudinal studies tracking cats over
extended periods could also provide insights into seasonal and temporal variations in movement. Finally,
interventions such as collars with bells, GPS-enabled cat fences, or zoning policies restricting cat access to
sensitive areas should be evaluated for their efficacy in balancing cat welfare with ecological preservation.

6.5 Conclusion
This study demonstrates the value of integrating diverse statistical methods to examine the complex interplay
of environmental and demographic factors influencing cat movement. The findings highlight the dual role of
cats as cherished companions and as potential disruptors of local ecosystems and public health. By addressing
these challenges, we can work towards solutions that respect the needs of both cats and the communities they
inhabit.
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