

Michigan Data Science Team

Shazam Clone

Week 2: Fourier Transform

Evan Teal, Dennis Farmer

Schedule for today

1: Digital Audio Recap

2: What is a Spectrogram?

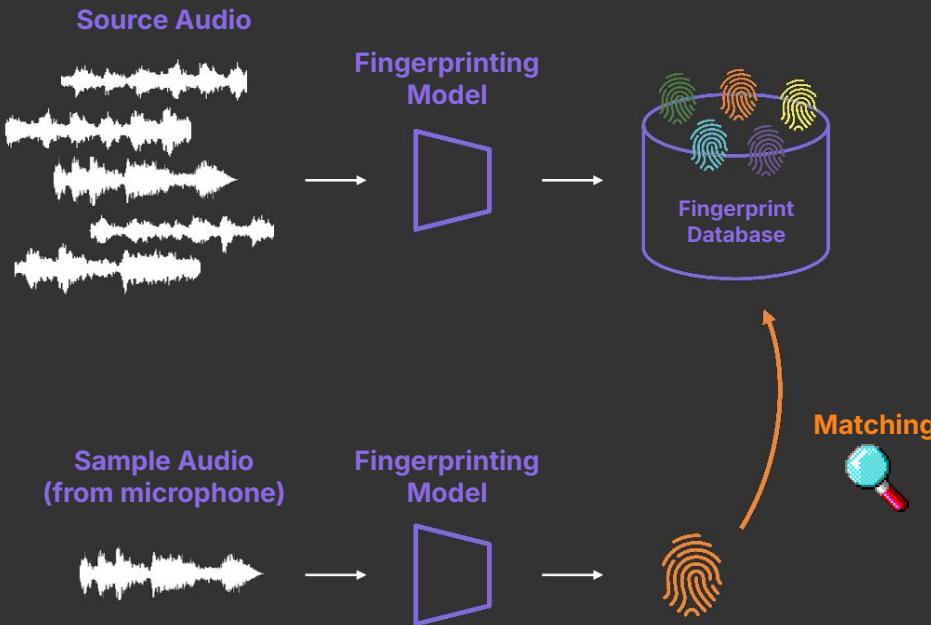
3: Fourier Transforms

4: Jupyter Notebook

Rough Timeline

Date	Activity
Sept 21	Introduction + Digital Audio
Sept 28	Fourier Transforms, Spectrograms
Oct 5	Constellation Mapping
-	Fall Break
Oct 19	Audio Search, Expo Intro
Oct 26	Buffer Week, MySQL
Nov 2	Flask endpoint, Expo
Nov 9	Putting it all together
Nov 16	Prepare for final presentations

Recap: Model Overview



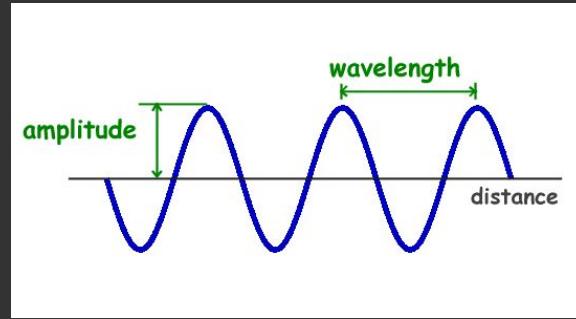
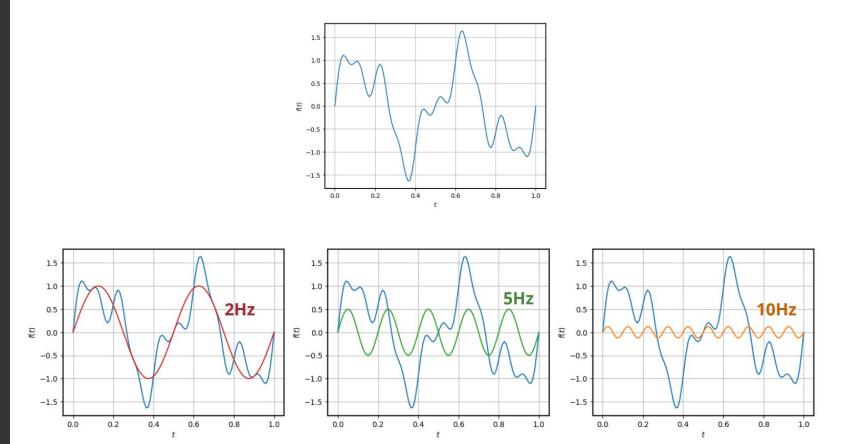
Recap: What is sound?

Sounds are composed of **combinations** of waves.

Sounds waves have 3 defining factors:

1. **Frequency** (Hz - cycles/sec)
2. **Amplitude** (dB - Loudness)
3. **Phase** (location)

Digital Audio: samples of **amplitude** at some **sampling rate**.



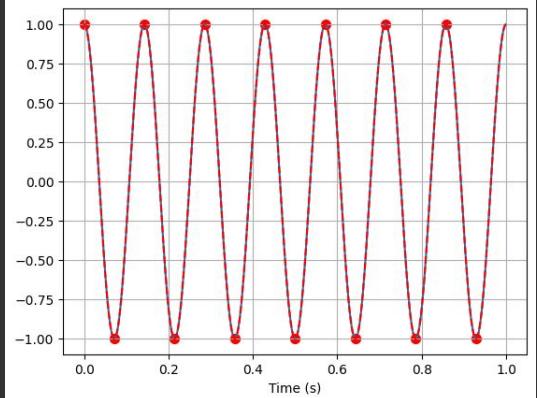
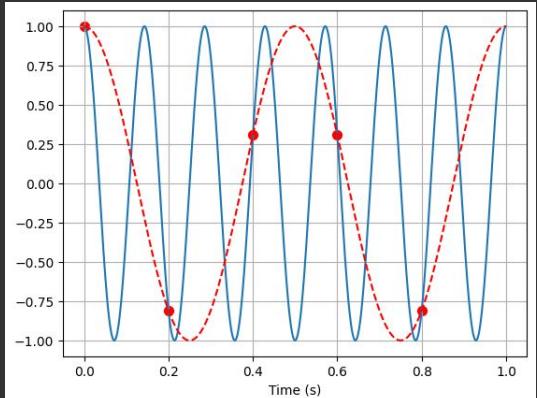
Recap: How many samples do we need?

We can perfectly reconstruct a signal with highest contained frequency f_{max} , if our sampling rate is greater than $2*f_{\text{max}}$.

Intuition: at least sample each peak and valley
(real world: sample a bit more)

When downsampling, first remove frequencies $> sr/2$ with “anti-aliasing” filter.

$$sr > 2f_{\text{max}} \equiv f_{\text{max}} < sr/2$$



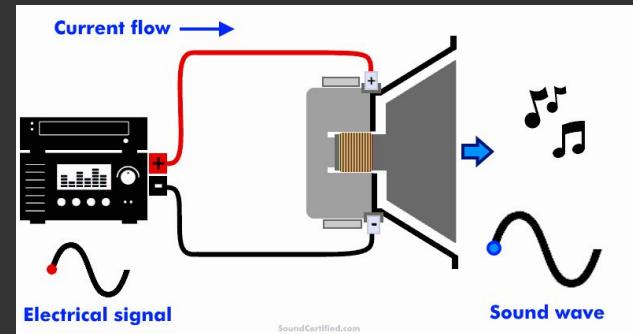
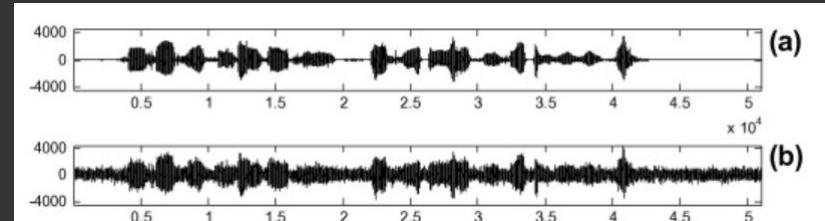
Recap: Waveform Files (.mp3, .wav)

Pressure on Y-axis and time on X-axis

Designed for **audio playback** but not interpretation.

Why is this bad?

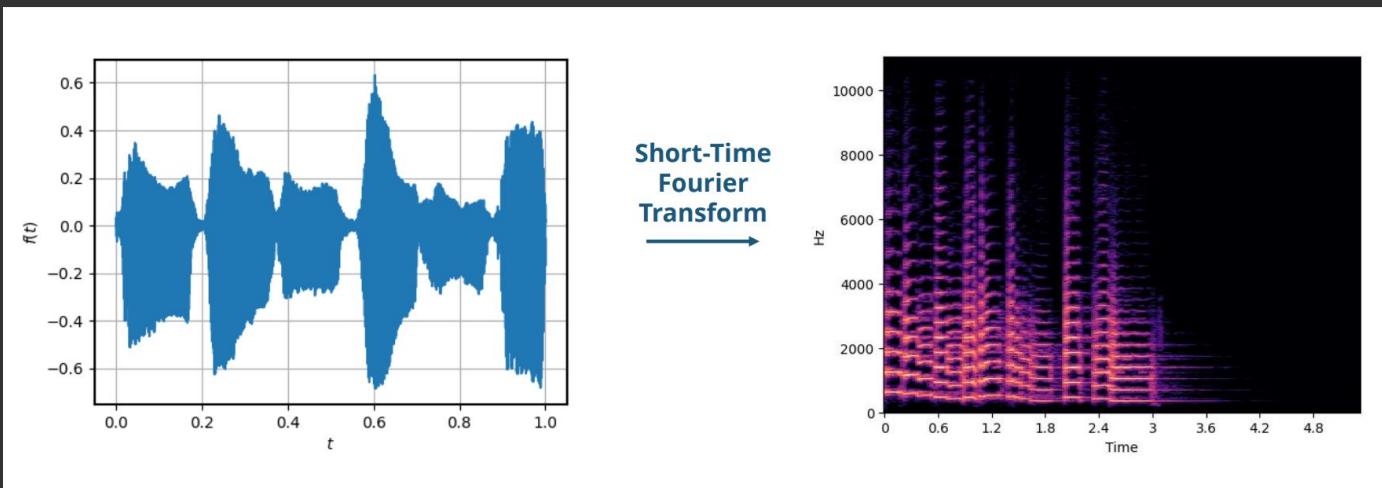
1. We cannot determine underlying frequencies
2. Background noise can't be isolated



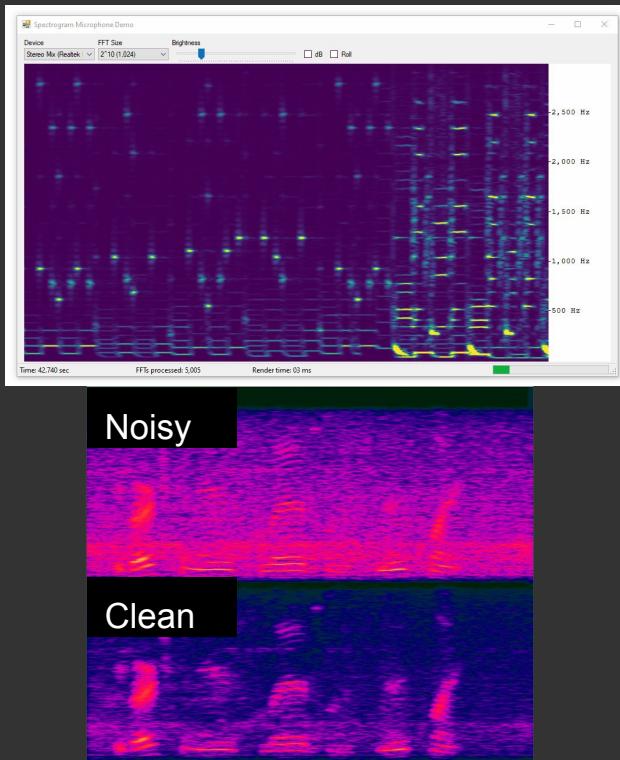
Recap: How do we fix this?

Waveform is not enough, we need frequencies:

Translate to a spectrogram!



Recap: Benefits of a spectrogram



We can see the distribution of frequencies while still maintaining a measure of amplitude and time.

Important frequencies stand out against background noise.

Audio fingerprinting is now possible!!!

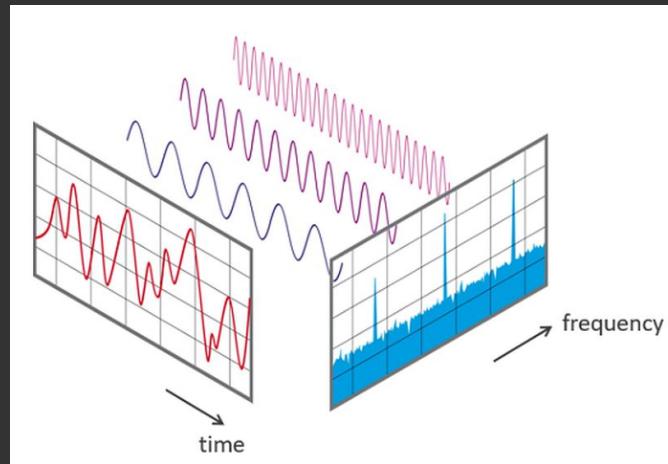
What is a Fourier Transform?

Formula to map functions in the **time domain** to the **frequency domain**.

Decipher which frequencies make up a signal via multiplying the original signal by many candidate frequencies.

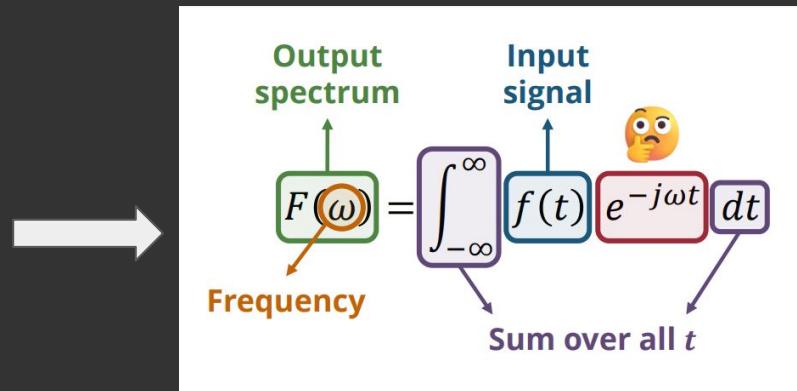
Uses:

Audio Recognition, Noise Cancelation,
Speech Recognition, Spectroscopy



Fourier Transform

$$F(\omega) = \int_{-\infty}^{\infty} f(t) e^{-j\omega t} dt$$



Why sine and cosine waves?

Why do we have a complex number?

$$F(\omega) = \int_{-\infty}^{\infty} f(t) e^{-j\omega t} dt$$

Euler's formula

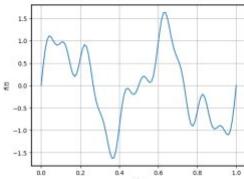
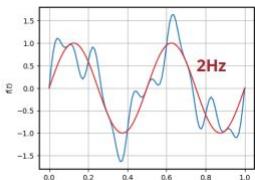
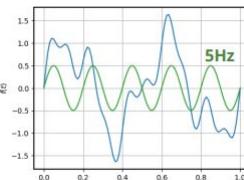
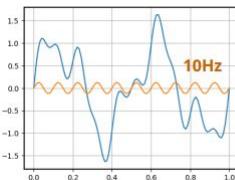
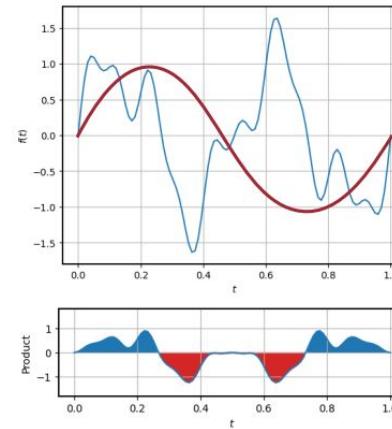
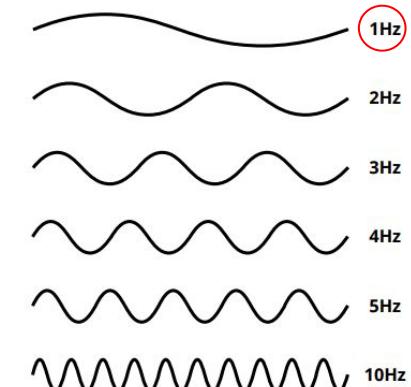
$$e^{j\theta} = \cos \theta + j \sin \theta$$

$$F(\omega) = \int_{-\infty}^{\infty} f(t) \cos(-\omega t) + j f(t) \sin(-\omega t) dt$$

Fourier Transform in Action

$$F(\omega) = \int_{-\infty}^{\infty} f(t) \cos(-\omega t) + j f(t) \sin(-\omega t) dt$$

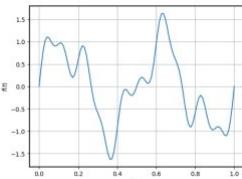
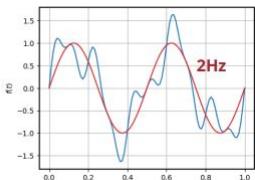
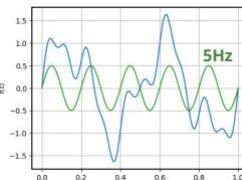
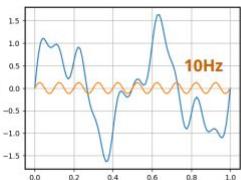
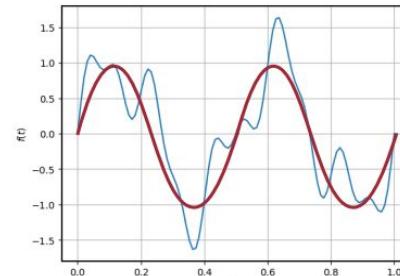
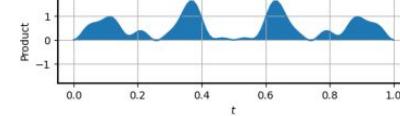
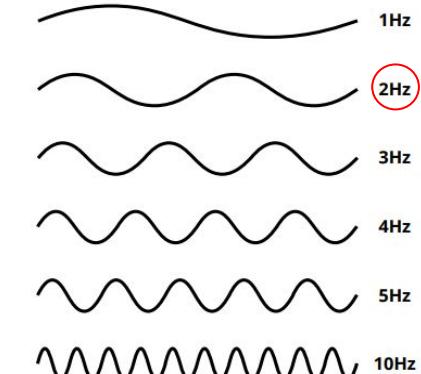
Sum over all t



Fourier Transform in Action

$$F(\omega) = \int_{-\infty}^{\infty} f(t) \cos(-\omega t) + f(t) \sin(-\omega t) dt$$

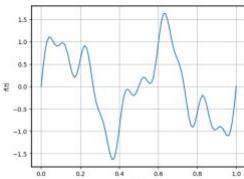
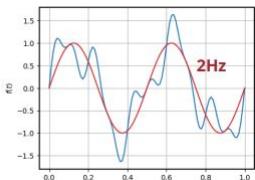
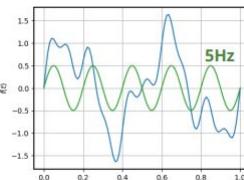
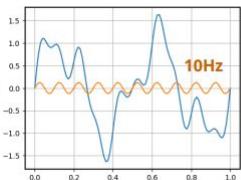
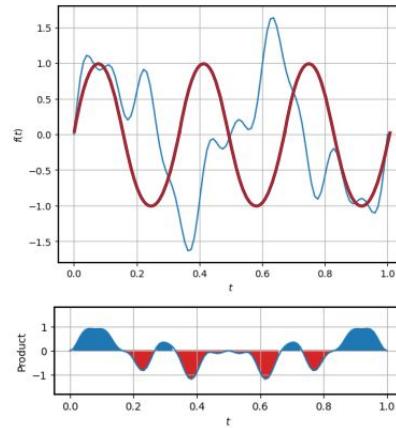
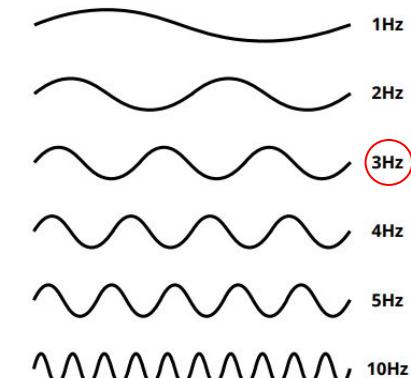
Sum over all t



Fourier Transform in Action

$$F(\omega) = \int_{-\infty}^{\infty} f(t) \cos(-\omega t) + j f(t) \sin(-\omega t) dt$$

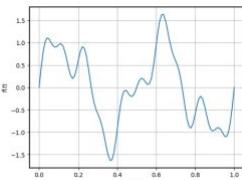
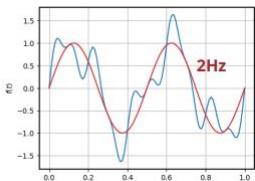
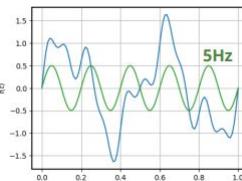
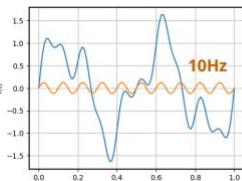
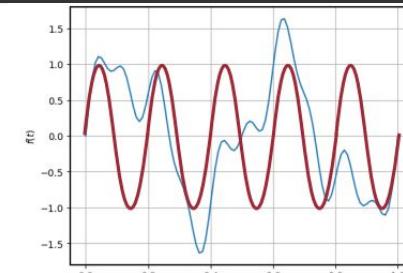
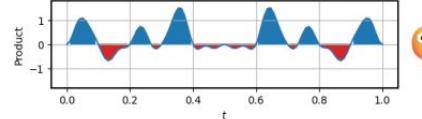
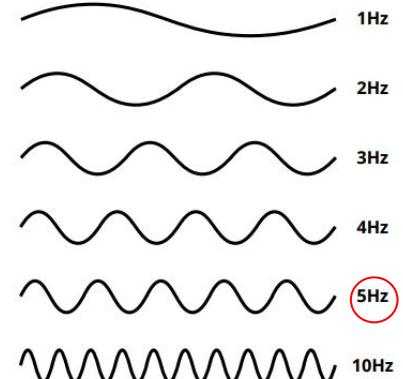
Sum over all t



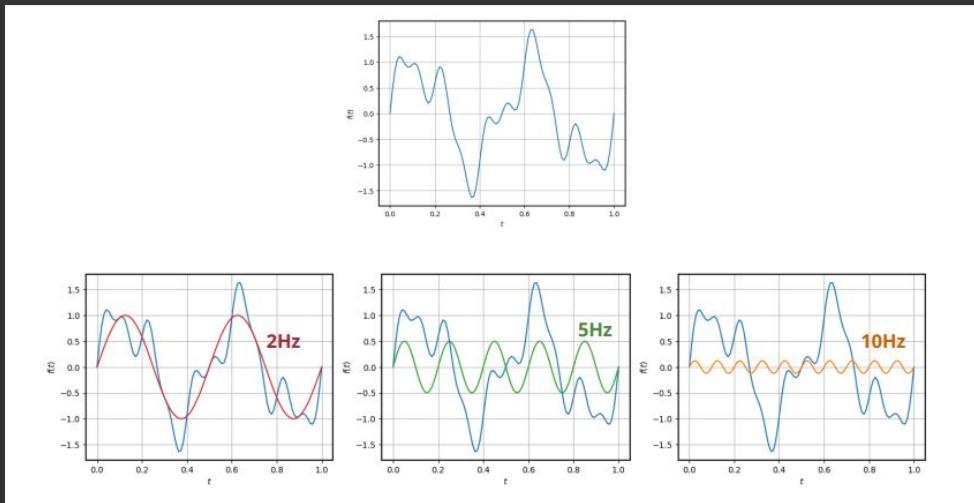
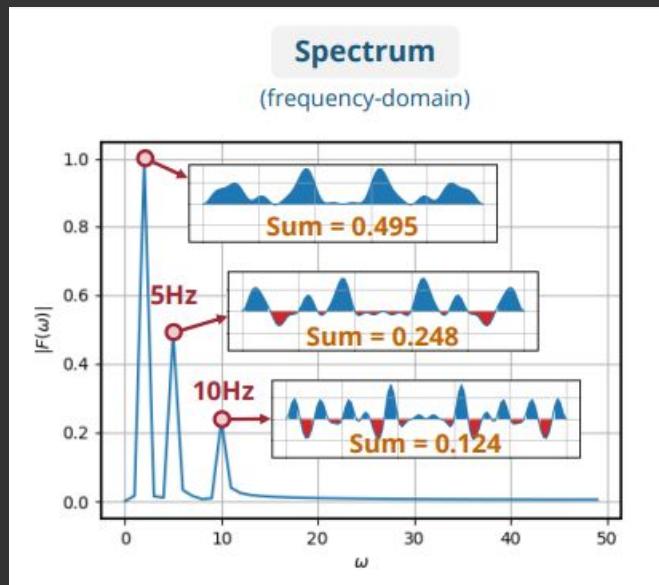
Fourier Transform in Action

$$F(\omega) = \int_{-\infty}^{\infty} f(t) \cos(-\omega t) + j f(t) \sin(-\omega t) dt$$

Sum over all t

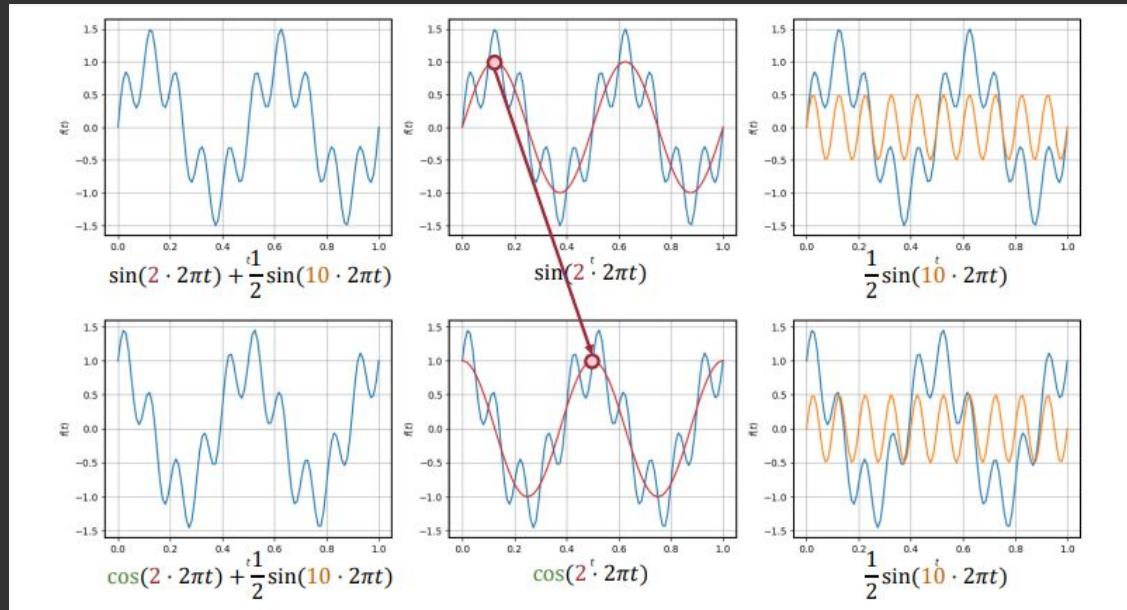


Fourier Transform: Final Product



Robustness Against Phase

What if our underlying frequency does not follow a sine wave (phase shift)?



Robustness Against Phase

Radian to Cartesian:

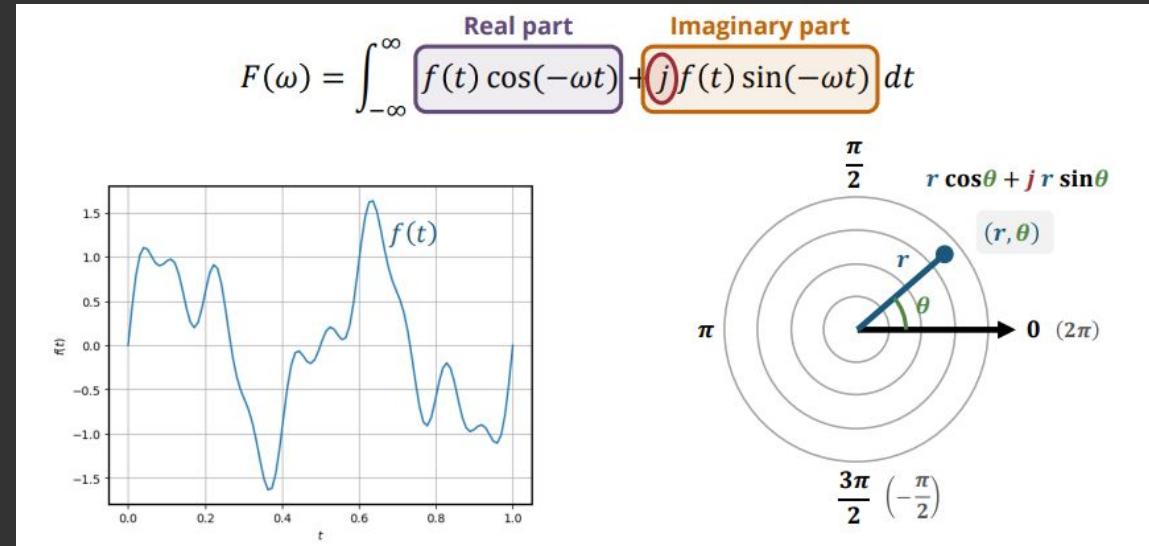
$$x = r \cos(\theta) \quad (\text{real})$$

$$y = r \sin(\theta) \quad (\text{imaginary})$$

r : Magnitude

θ : Phase

Allows us to explore waveforms at any phase offset.



Robustness Against Phase

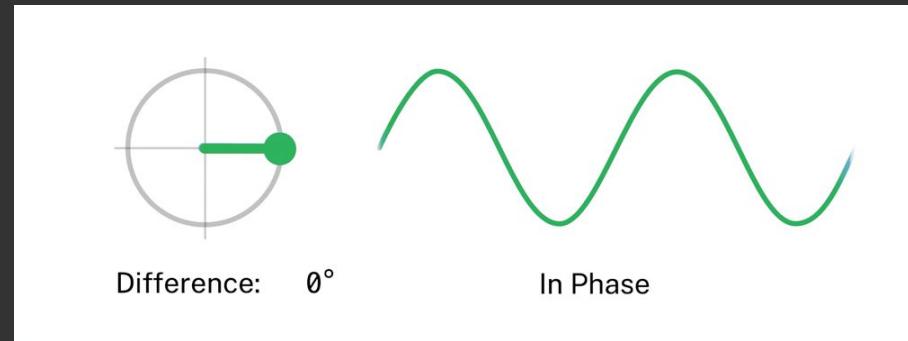
Main Idea:

independent of phase offset

Real(x): presence of cosine at freq
Im(x): presence of sine at freq

Sine and cosine contributions are treated equally when we calculate magnitude of the output:

$$|a + bj| = \sqrt{a^2 + b^2}$$



$$\begin{aligned} F(\omega) &= \int_{-\infty}^{\infty} f(t) e^{-j\omega t} dt \\ &= \int_{-\infty}^{\infty} \underbrace{f(t) \cos(-\omega t)}_{\text{real}} + j \underbrace{f(t) \sin(-\omega t)}_{\text{imaginary}} dt \end{aligned}$$

Discrete Fourier Transform (DFT)

For digital audio:
replace integral with summation
over discrete samples

k: discrete frequency
n: discrete time index
N = number of samples

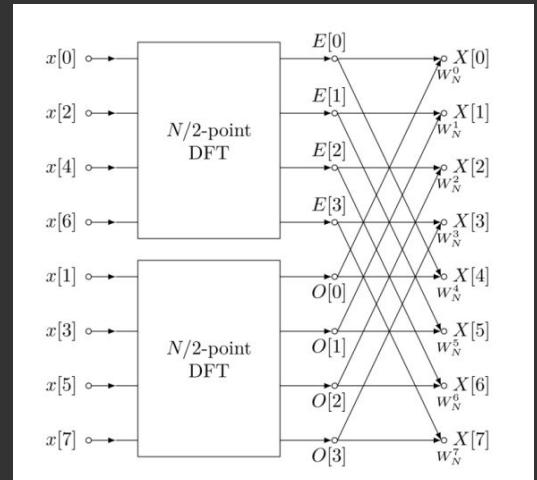
$$\begin{aligned} F(\omega) &= \int_{-\infty}^{\infty} f(t) e^{-j\omega t} dt \\ &= \int_{-\infty}^{\infty} \underbrace{f(t) \cos(-\omega t)}_{\text{real}} + j \underbrace{f(t) \sin(-\omega t)}_{\text{imaginary}} dt \end{aligned}$$

$$\begin{aligned} X_k &= \sum_{n=0}^{N-1} x_n e^{-j2\pi \frac{n}{N} k} \\ &= \sum_{n=0}^{N-1} \underbrace{x_n \cos(-2\pi \frac{n}{N} k)}_{\text{real}} + j \underbrace{x_n \sin(-2\pi \frac{n}{N} k)}_{\text{imaginary}} \end{aligned}$$

Fast Fourier Transform (FFT)

Efficient Implementation of DFT: $O(n \log(n))$

1. **Base Case:** DFT
2. **Split** into evens/odds
3. **Recursive call** on both sides.
4. Do a **weighted recombination** of even and odd segments



$$X_k = \underbrace{\sum_{m=0}^{N/2-1} x_{2m} e^{-\frac{2\pi i}{N/2} mk}}_{\text{DFT of even-indexed part of } x_n} + e^{-\frac{2\pi i}{N} k} \underbrace{\sum_{m=0}^{N/2-1} x_{2m+1} e^{-\frac{2\pi i}{N/2} mk}}_{\text{DFT of odd-indexed part of } x_n} = E_k + e^{-\frac{2\pi i}{N} k} O_k \quad \text{for } k = 0, \dots, \frac{N}{2} - 1.$$

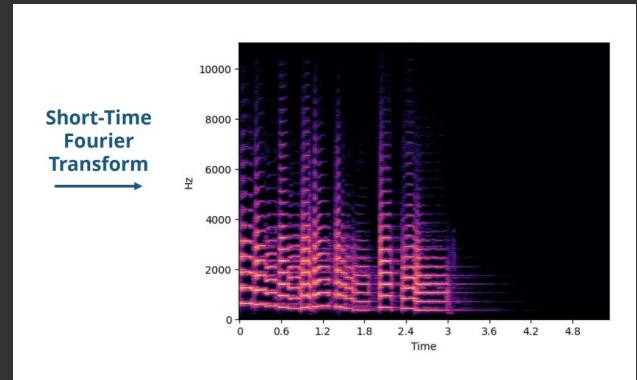
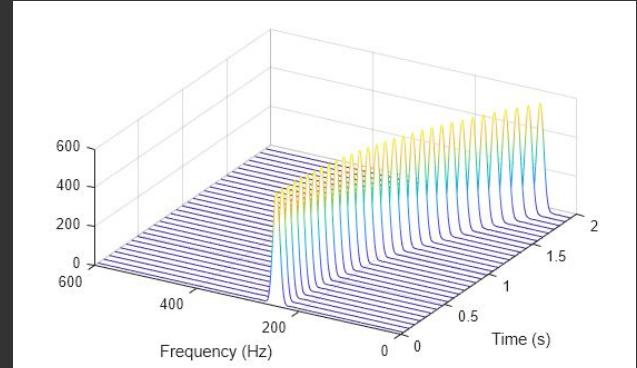
Cooley-Tukey Formula

Short-Time Fourier Transform (STFT)

Now we know what frequencies make up our original sound!

How do we incorporate back time?

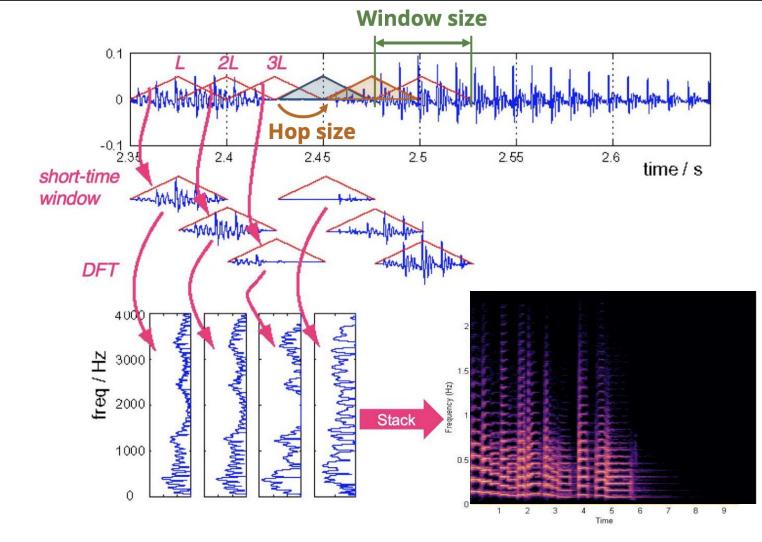
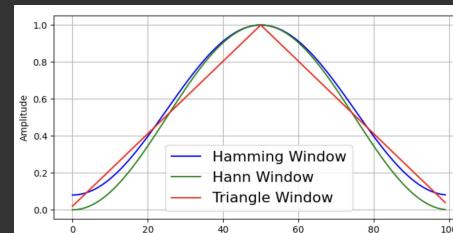
Take fourier transform at consecutive time “windows” to keep track of frequency distribution across time.



Short-Time Fourier Transform - Window Functions

Key Idea: Take the Fourier Transform of a segment (with some **window size**), then shift over (by some **hop size**) and repeat.

Each window is tapered at the edges by multiplying by a **window function** to reduce sharpness of transitions



Short Time Fourier Transform - Python

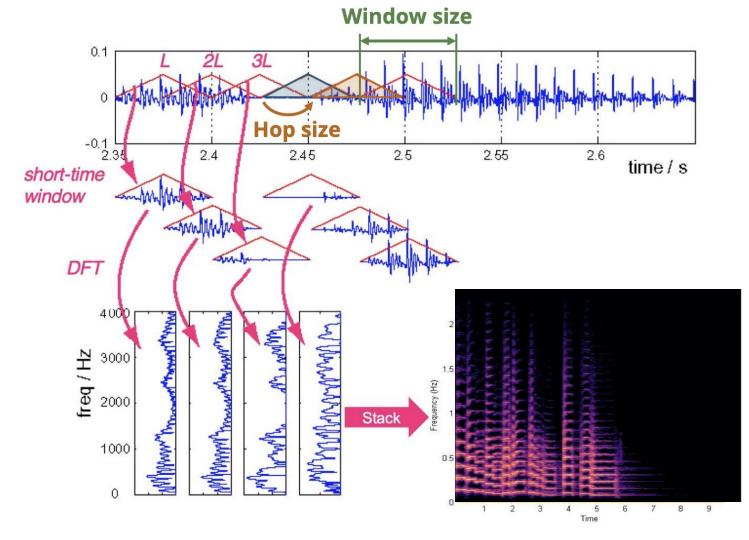
```
audio_path = "./asset/log_scale_perception.wav"
audio, sr = librosa.load(audio_path, sr=None)

# number of consecutive samples that window is applied to
win_length = 2**11
hop_length = win_length // 4 # 75% overlap
window = scipy.signal.get_window("triang", Nx=win_length)

nperseg = win_length
# Number of points used in the FFT for each windowed segment
nfft = win_length # common default
# if nfft > win_length,
# zero pad (segment*window) array to be length nfft
# before computing FFT
# effect: increase resolution, no new information

fs=sr
noverlap = nperseg - hop_length

freq_scipy, time_scipy, s_scipy = scipy.signal.stft(
    audio,
    fs=fs, window="hann", nfft=nfft,
    nperseg=nperseg, noverlap=noverlap
)
```



$$n_{\text{rows}} = 1 + \frac{nfft}{2}$$

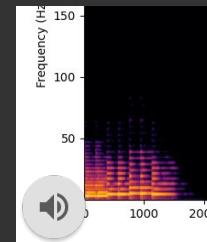
$$n_{\text{cols}} = 1 + \left\lfloor \frac{N - \text{window_size}}{\text{hop_length}} \right\rfloor$$

What information do we now have?

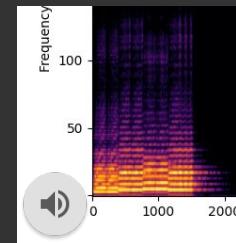
Timbre: tone color of a complex tone, determined by the different partials (pure tones/frequencies) composing the complex tone.

```
stft_db = librosa.amplitude_to_db(np.abs(stft), ref=np.max)
im = plt.imshow(stft_db, cmap="inferno", aspect="auto", origin="lower")
plt.colorbar(im, format="%+2.0f dB")
plt.xlabel("Time (sec)")
plt.ylabel("Frequency (Hz)")
plt.show()
```

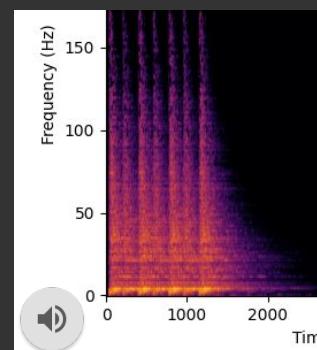
Piano



Flute



Cymbal



Trumpet

